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Pharmacokinetics of Vinylidene
Chloride in the Rat
by M. J. McKenna,* P. G. Watanabe,* and
P. J. Gehring*

The metabolism of inhaled vinylidene chloride in rats represents a balance of biotransformation path-
ways leading to the formation of a reactive alkylating species which is normally detoxified by conjugation
with glutathione. Detoxification of the reactive intermediate formed from inhaled VDC is dependent upon
the availability of hepatic glutathione (GSH); as VDC exposure concentrations are increased, the fraction
of the dose detoxified by conjugation with GSH decreases markedly, commensurate with depletion of
hepatic GSH. This reactive intermediate in the absence of GSH alkylates hepatic macromolecules and
causes cell death. Similarly, hepatic GSH plays a vital role in the detoxification of the reactive metabolite
formed from inhaled vinyl chloride (VC). However the dose-response relationships for the utilization of
GSH and the accumulation of alkylating metabolites following inhalation exposure to either VDC or VC
point to distinct differences which may explain the differing biological activities of the two materials.
Finally, preliminary pharmacokinetic data for inhaled VDC in mice indicate an enhanced susceptibility to
VDC by virtue of an increased ability for production of alkylating VDC metabolites over that observed in
the rat. The importance of these findings in light of recent evidence for a carcinogenic effect of VDC in
mice is discussed.

Introduction
Vinylidene chloride (1,1-dichloroethylene, VDC)

is used extensively as a monomeric intermediate in
the production of plastics. Studies by Jaeger et al.
(1) have demonstrated that acute inhalation
exposure to VDC results in a decrease in liver
glutathione (GSH) concentrations of rats exposed
to high VDC concentrations by inhalation. Further,
VDC-induced hepatotoxicity is enhanced when
hepatic GSH levels are lowered by fasting for 18 hr
prior to VDC exposure.

Previous studies conducted in this laboratory (2)
have described the pharmacokinetics and
metabolism of VDC after oral and inhalation ex-

posure of rats to 14C-VDC. In these studies the fate
of VDC was shown to be dependent upon the mag-
nitude of the dose. An 18-hr fast prior to VDC ad-
ministration decreased the excretion of VDC uri-
nary metabolites associated with the GSH
metabolic pathway in rats given a 50 mg/kg oral
dose of VDC. The diminished ability of fasted rats
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to detoxify VDC correlates with the enhancement
of VDC-induced toxicity in fasted rats observed by
.Jaeger, et al. (1).

The results of previous experiments have led to
the hypothesis that the hepatotoxicity of VDC is
mediated by a reactive electrophilic metabolite of
VDC. At low levels of exposure this reactive in-
termediate is detoxified by conjugation with GSH.
Exposure to toxic concentrations of VDC results in
depletion of hepatic GSH and consequently the al-
kylation of tissue macromolecules rather than
GSH. The toxicity of VDC may also be enhanced
if GSH levels are depleted, by fasting or other
means, prior to VDC exposure.

Vinyl chloride (VC) is also biotransformed to an
intermediate which is detoxified by conjugation
with GSH. The dose-dependent pharmacokinetics
have been described in studies of vinyl chloride
(VC) pharmacokinetics and metabolism (3, 4).
Similarities in the chemical structures of VC and
VDC notwithstanding, marked differences in the
biological actions of the two materials have been
observed which may be accounted for by differ-
ences in their pharmacokinetics and metabolism in
laboratory animals. Therefore the purpose of this
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report is to summarize our recent experiments on
the fate of inhaled VDC in rats and provide a com-
parison with similar data for VC. In addition, pre-
liminary data on the fate of VDC in mice are also
presented.

Results and Discussion

Fate of 14C-Vinylidene Chloride in the Rat
Following Inhalation Exposure
Male Sprague-Dawley rats (normally fed or

fasted for 18 hr) were exposed to 10 or 200 ppm
14C-VDC for 6 hr. Immediately after exposure the
animals were placed in individual glass metabolism
cages and the elimination of "4C-activity was fol-
lowed for 72 hr. A detailed description of the ex-
perimental procedure has been published previ-
ously (4). Maintenance of a quantitative collection
system for "4C-activity and analysis of residual
radioactivity at termination of the experiment (72
hr) enabled the calculation of a total "4C-balance for
each animal. The total recovery of 14C-activity
from each rat was assumed to approximate the total
amount of 14C-activity in the body (body burden) at
the end of the inhalation exposure.
The body burden of "4C-activity, inclusive of

VDC per se aad metabolites formed from VDC, for
rats exposed to 10 or 200 ppm "4C-VDC for 6 hr are
given in Table 1. Little difference between fed and
fasted rats was observed in the net retention and
metabolism of 14C-VDC during the 6-hr inhalation
exposure to 10 ppm '4C-VDC. However, fasted
rats exposed to 200 ppm 14C-VDC had significantly
lower body burdens of 14C-VDC following expo-
sure than did fed rats of the same exposure group.
Furthermore the increase in body burdens of both
fed and fasted rats at 200 vs 10 ppm was less than
the proportional increase in the VDC exposure
concentration. Thus, if biotransformation of
4C-VDC was a major factor in the accumulation of
"4C-activity during inhalation exposure, the data
indicate that the capacity for VDC metabolism may

Table 1. Body burdens of 4C-activity in rats exposed to 10 or 200
ppm '4C-VDC for 6 hr.

Exposure
concentration, Body burden,

ppm mg-eq l4C_VDC/kga
Fedrats 10 2.89 ± 0.12
Fasted rats 2.30 ± 0.05
Fed rats 200 44.53 ± 3.05
Fasted rats 35.93 ± 0.30b
ax ± SE, n = 4. Defined as the total 14C-activity (VDC plus

metabolites) in the body at the end of the inhalation exposure.
bSignificant fed-fasted difference, p < 0.05, t1test.

have been exceeded at the higher VDC exposure
level. This dose-dependent effect was enhanced by
fasting prior to VDC inhalation exposure. Fasted
rats exposed to 200 ppm '4C-VDC showed definite
signs of VDC-induced liver and kidney toxicity fol-
lowing exposure. These effects, characterized by
hepatocellular degeneration and necrosis as well as
proximal renal tubular epithelial degeneration, were
evident only in fasted animals exposed to 200 ppm
VDC. Microscopic examinations of liver and kid-
ney tissues from all other animals were normal.
Since the total amount of VDC biotransformed by
fed rats exposed to 200 ppm was greater than that
observed in fasted rats, the data clearly indicate
that fasting augments the process whereby reactive
intermediates formed from VDC induce tissue
damage.
The disposition of "4C-activity by rats exposed to

'4C-VDC for 6 hr is shown in Table 2. The elirni-
nation of "4C-activity via the lungs was totally ac-
counted for as unchanged '4C-VDC and 14CO2. No
additional unchanged 14C-VDC or volatile
"4C-activity was found in urine, feces, or tissues,
indicating that the radioactivity in these samples
represented nonvolatile metabolites of 14C-VDC.

Table 2. Recovery of 14C-activity from rats during 72 hr following
4C-VDC exposure for 6 hr.

Body burden, %a
10 ppm 200 ppm

Fed rats Fasted rats Fed rats Fasted rats
Expired VDC 1.63 1.60 4.17b 8.36c
14CO2 8.74 8.27 8.22 7.24
Urine 74.72 78.19 74.66 70.41
Feces 9.73 6.75 6.39 2.72
Carcass 4.75 5.28 6.18b 10.52c
Cage wash 0.44 0.27 0.34 0.76
ax of 4 rats/group. Expressed as the percentage of the end-

exposure body burden values given in Table I.
bSignificant difference from 10 ppm group, p < 0.05.
cSignificant fed-fasted difference, p < 0.05.

The data in Table 2 are presented as the percen-
tage of the total "4C-activity eliminated during 72 hr
after exposure plus that remaining in the tissues at
72 hr following the inhalation exposure. If all of the
processes involved in the disposition of '4C-VDC
in the rat could be described by first-order phar-
macokinetics, i.e., if the rate constants for all pro-
cesses were independent of the amount of VDC
available, then the proportions of "4C-activity
eliminated or retained in the body would be the
same for all animals regardless of the 14C-VDC ex-
posure concentration. The data in Table 2 indicate
clearly that the fate of 14C-VDC is dependent upon
both the VDC exposure concentration and the
physiological status of the rats.
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Rats exposed to 200 ppm 14C-VDC exhaled a
greater percentage of their acquired body burden of
"4C-activity as unchanged 14C-VDC than did the
animals exposed to 10 ppm 14C-VDC. More impor-
tantly, rats exposed to the higher concentration of
VDC showed a greater percentage of the body bur-
den remaining in the carcass at 72 hr after exposure.
Retention of "4C-activity in the carcass was greater
in fasted rats exposed to 200 ppm 14C-VDC, de-
spite a smaller fraction of the body burden biotrans-
formed by fasted than fed rats (Table 1). The in-
creased elimination of unchanged VDC with in-
creasing exposure concentrations indicates that the
biotransformation of '4C-VDC may be a saturable
process. The effect is enhanced by fasting prior to
exposure to 14C-VDC, indicating that fasting prior
to VDC exposure reduces the capacity for biotrans-
formation and detoxification of VDC in the rat.
A comparison of the retention and metabolism of

1 C-VDC with that for 1 C-vinyl chloride (14C-VC)
is shown in Table 3. Inhalation exposures of nor-
mally fed rats to both radio-labeled chemicals were
conducted under identical conditions. Values are
given in micromole equivalents of '4C-VDC or
14C-VC per kilogram body weight to facilitate com-
parison of the data. Rats exposed to 10 ppm
"4C-VDC acquired approximately twice the body
burden of those exposed to 10 ppm 14C-VC. Al-
though the percentage of the end-exposure body
burden metabolized to nonvolatile 14C-metabolites
was comparable in both the VDC- and VC-exposed
animals, the greater accumulation of 14C-activity
during exposure to '4C-VDC suggests a faster rate
of biotransformation for VDC in the rat than for
VC. The reduction in the percentage of the body
burden metabolized following the higher exposure
concentrations of VDC and VC indicates the
dose-dependent character of the pharmacokinetics
of both materials.

Table 3. Body burdens and metabolism of 14C-VC and 14C-VDC in
rats after inhalation exposure for 6 hr.'

Exposure
concentra- Body burden, Metabolized, %
tion, ppm ,umole/kg ,Amole/kgb Metabolized

VDC 10 30.10 ± 1.25 29.58 ± 1.35 98
200 463.85 ± 63.02 445.10 ± 33.13 96

VC 10 15.97 ± 0.81 15.65 ± 0.81 98
1000 433.23 ± 14.03 380.48 ± 16.29 88

ax ± SE, n = 4.
bCalculated as the body burden minus the 14C-VDC or VC

expired unchanged.

Role of Glutathione in VDC Metabolism

As mentioned previously, studies by Jaeger et al.
(F) and those in this laboratory (2) were consistent

with the hypothesis that hepatic glutathione plays a

major role in the detoxification of VDC. Evidence
for the conjugation of VDC or some reactive me-
tabolite of VDC with glutathione was obtained in
these studies by analysis of the urinary metabolites
of 14C-VDC in the rat. High pressure liquid
chromatography of rat urine on a strong anion ex-
change column gave four major peaks of
14C-activity, as shown in Figure 1. The chromato-
graphic profiles of urinary "4C-activity were quali-
tatively similar among all animals regardless of
14C-VDC exposure concentration or pretreatment
(fed vs. fasted rats). Metabolites B and C were
identified by gas chromatography-mass spec-
trometry as N-acetyl-S-(2-hydroxyethyl)cysteine
and thiodiglycolic acid, respectively. The mass
spectra of these metabolites were identical to those
of synthesized reference materials. Their identifica-
tion was further substantiated by quantitative
coelution of the "4C-labeled reference materials
with the urinary metabolites using high pressure li-
quid chromatography. The presence of these mer-
capturic acid derivatives in rat urine following
VDC exposure substantiates the proposed conjuga-
tion with glutathione as a major detoxification
pathway for VDC. Combined, these two urinary
metabolites account for 40-50% of the total urinary
14C-activity following 14C-VDC exposure. Both
metabolites have also been identified as major
metabolites in rat urine following inhalation expo-
sure to 14C-VC. Efforts to identify the two remain-
ing urinary metabolites ofVDC are still in progress.

HIGH PRESSURE LIOUID CHROMATOGRAM OF RAT URINE
FOLLOWING 1'C-VDC EXPOSURE

I

LI

10 15
Fraction Number

FIGURE 1. Typical separation of rat urinary "4C-activity by
high-pressure liquid chromatography, into four major frac-
tions of urinary "4C-activity: (A) unknown; (B) N-acetyl-S-(2
hydroxyethyl)cysteine; (C) thiodiglycolic acid; (D) unknown.
Recovery of "4C-activity from the column was 99.3 ± 1.65%
(X ± SD, n = 30).
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Metabolism of VDC
Associated with Toxicity

In several instances, alkylation of tissue subcellu-
lar macromolecules either directly or by a reactive
metabolite has been demonstrated to precede chem-
ically induced tissue necrosis. Both the biotrans-
formation of VDC to a reactive intermediate and its
acute hepatotoxic action favored the possibility that
evaluation of this phenomenon may prove a useful
tool in assessing the biotransformation of VDC as

associated with VDC induced hepatotoxicity. Ini-
tial experiments were conducted in the same ani-
mals employed in the 14C-balance studies described
earlier. Hepatic tissue obtained from rats 72 hr after
'4C-VDC exposure was repeatedly extracted as

described by Jollow et al. (5). Values for non-

extractable or so-called "covalently bound"
'4C-activity in hepatic tissue of rats exposed to 10
or 200 ppm 14C-VDC are shown in Table 4. Values
for total metabolism of 14C-VDC are also presented
to allow evaluation of the relationship between
covalent binding and overall metabolism of
'4C-VDC. Metabolized '4C-VDC was calculated
from the total and end-exposure body burden minus
the 14C-activity expired as VDC. Fed rats showed
a 15-fold increase in biotransformed 14C-VDC with
the 20-fold increase in exposure concentration
(from 10 to 200 ppm). However, the concentration
of covalently bound 14C-activity in the liver in-
creased approximately 26-fold, appreciably greater
than the observed increase in VDC metabolism.
Fasted rats exposed to 200 ppm 14C-VDC
metabolized less VDC than did fed rats. However,
the concentration of covalently bound 14C-activity
in the liver was greater in fasted than in fed rats
following the 200 ppm exposure. The increase in
covalent binding in the livers of fasted rats was
more apparent after normalization of the data to
account for differences in metabolism of VDC (B/A
ratio).
The data presented in Table 4 indicate that an

increase in the covalent binding of VDC or some
reactive metabolite to hepatic tissue is associated
with VDC hepatotoxicity. The greater increase in
macromolecular binding relative to that observed
for metabolism of VDC with increasing exposure
concentrations or after fasting may result from
overwhelming the capacity to detoxify the reactive
intermediate formed from VDC. Therefore as the
capacity to detoxify VDC is exceeded (i.e., as tis-
sue GSH stores are depleted), covalent binding to
tissue constituents is enhanced.
The results of the experiments described above

were formulated into a working hypothesis for the
biotransformation of VDC which is represented
schematically in Eq. (1). Apparently, VDC me-
tabolism represents a balance between biotrans-
formation pathways leading to detoxification via
GSH or to covalent binding and subsequent tissue
damage. Evidence for the initial biotransformation
of VDC to one or more reactive intermediates has
been discussed in several papers presented in this
symposium. In addition experiments conducted on
liver homogenates in our own laboratory have dem-
onstrated that VDC conjugation with GSH re-
quires the presence of a microsomal enzyme sys-
tem. We have been unable to demonstrate conjuga-
tion of VDC with GSH either directly or using only
the soluble fraction of a liver homogenate (GSH
alkyl transferases) in vitro.

H '1 oCI
C C

Reativ Mtabo s

(Electrophile
Reactive Metabolite(s) -epoxide?)

Detoxification
* Conjugation with
GSH

* Urinary mercapturic
acid excretion

Toxicity
* Covalent binding
to tissue nucleophiles

(l)

Table 4. Metabolism of 14C-VDC and covalent binding of "4C-activity to rat hepatic tissue
after inhalation exposure to '4C-VDC.a

(A) (B)
Exposure Metabolized 14C-VDC 14C-VDC bound,
concn, ppm Pretreatment mg-eq/kg ug-eq/liver protein (B)/(A)

10 Fed 2.84 ± 0.13 2.49 ± 0.17 0.88 0.08b
Fasted 2.26 ± 0.06 2.47 ± 0.29 1.10 ± 0.15

200 Fed 42.73 ± 3.18 64.18 ± 7.97 1.49 ± 0.10
Fasted 32.92 ± 0.32c 79.46 ± 4.90c 2.42 ± 0.17c

aAll values represent the X ± SE for four rats.
bCovalent binding data normalized to account for difference in metabolized

VDC.
cSignificant fed-fasted difference p < 0.05. t-test.
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Subsequent experiments have been directed by
defining the relationship between liver GSH deple-
tion and covalent binding of "4C-activity following
inhalation exposure to 14C-VDC. The reactive in-
termediate formed from vinyl chloride is also detox-
ified in vivo by conjugation with GSH and, in addi-
tion, some degree of covalent binding of '4C_VC
metabolites in the liver has been demonstrated
(Watanabe et al., unpublished data). Therefore it
was decided to conduct the experiments on
'4C-VDC in a manner which would allow direct
comparison of the data for both materials.
Male rats were exposed to constant concentra-

tions of 14C-VDC ranging from 5 to 200 ppm. Ex-
posure duration was 6 hr. Immediately after expo-

sure the animals were sacrificed and hepatic non-

protein sulfhydryl levels and covalent binding of
14C-activity to hepatic tissue were assayed by the
methods of Sedlak and Linsay (6) and Jollow et al.
(5), respectively. The results of these experiments
are shown in Figure 2.

Exposure Concentation, Ippm\

FIGURE 2. Dose-response relationship for (e) hepatic NPSH de-
pletion and (o) covalent binding of 14C-VDC metabolites to
liver protein following inhalation exposure of rats to
14C-VDC. Each point represents the mean for three rats.

Hepatic NPSH concentrations declined with in-
creasing VDC exposure concentrations. The
dose-dependent or saturable character of VDC de-
toxification is apparent, indicating an initial devia-
tion from first-order or linear kinetics at about 50
ppm. However, appreciable covalent binding of
14C-activity to liver protein was found only after
VDC exposure which depleted hepatic glutathione
by 30% or greater. Thus the metabolic events as-

sociated with VDC-induced hepatotoxicity con-

tinue to increase markedly when the VDC expo-

sure concentration is sufficiently high to produce
enough reactive metabolite to exceed the availabil-
ity of glutathione for detoxification. The data are

consistent with the hypothesis that covalent binding
of VDC metabolites to tissue macromolecules rep-
resents a biochemical event which precedes the de-

velopment of VDC hepatotoxicity.
A comparison of dose-response relationships for

hepatic glutathione depletion and covalent binding
to liver protein following '4C-VDC or '4C_VC in-
halation exposure is shown in Figure 3. Inhalation
exposure of rats to '4C-VC is less effective in pro-
ducing hepatic N PSH depletion than observed with
VDC. Furthermore covalent binding of '4C-VC
metabolites to liver protein approaches saturation
at VC exposure concentrations greater than about
500 ppm. Thus at VC exposure concentrations as

high as 5000 ppm the accumulation of reactive VC
metabolites is not sufficiently great enough to result
in hepatotoxicity.
The dose-response relationships shown in Figure

3 indicate that VDC is more rapidly metabolized
than VC to reactive metabolites which can deplete
hepatic glutathione or covalently bind to liver ma-

cromolecules. The apparent saturation of covalent
binding of VC metabolites in the liver likely results
from saturation of the biotransformation of VC to a

reactive intermediate.

IC

Exposure Concentration (ppm1)

FIGURE 3. Comparison of dose-response relationships for (.)
hepatic NPSH depletion and (o) covalently bound
04C-activity in the liver following 14C-VDC or 14C-VC expo-
sures. Each point represents the mean for three or five rats.

Fate of 14C-VDC in the Mouse

The results of preliminary pharmacokinetic ex-

periments on the fate of inhaled 14C-VDC in mice
are summarized in Table 5. In these experiments,
male Ha(ICR) mice were exposed to 10 ppm
14C-VDC for 6 hr. Immediately after exposure,
these animals were placed in glass metabolism
cages and excreta collected for 48 hr according to
the "4C-balance study protocol outlined for rats (4).
Table 5 shows the disposition of '4C-VDC in rats

and mice following exposure to 10 ppm 14C-VDC.
The single 6-hr exposure to 14C-VDC resulted in a
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body burden of 5.3 mg-eq. 14C-VDC/kg in the
mouse, nearly twice that obtained in the rat in an
identical experiment. Total metabolism of
14C-VDC was more efficient in the mouse than
the rat, the former eliminated less than 1% of
the body burden as unchanged VDC in expired air.
The higher body burden and more rapid

metabolism of VDC by mice suggested that pro-
duction of toxic metabolites of VDC by mice may
be greater than that observed in rats and thus render
them more susceptible to the effects of VDC ex-
posure. A comparison of values obtained for cova-
lently bound '4C-activity in liver and kidney of mice
and rats immediately following 14C-VDC exposure
is shown in Table 6. This data indicate clearly the
enhanced production of reactive metabolites of
VDC in mice as evidenced by the marked increase
in covalently bound '4C-activity in both liver and
kidney when compared to the rat. In the context of
previous findings which indicated the relationship
between covalent binding and VDC-induced tissue
damage in rats, the data clearly indicate that the
mouse is much more susceptible than the rat to the
adverse effects of VDC.

Table 5. Disposition of '4C-activity in rats and mice following inha-
lation exposure to 10 ppm 14C-VDC.

Mice Rats

Expired VDC, %a 0.65 + 0.07 1.63 ± 0.14
Expired 14CO2, %a 4.64 ± 0.17 8.74 ± 3.72
Body burden, %a
Urine 80.83 ± 1.68 74.72 ± 2.30
Feces 6.58 ± 0.81 9.73 + 0.10
Carcass 5.46 ± 0.41 4.75 ± 0.78
Cage Wash 1.83 ± 0.84 0.44 ± 0.28

Body burden, mg-eq 14C-VDC/kg 5.30 + 0.75 2.89 ± 0.24
Total metabolized VDC,
mg-eq '4C-VDC/kg 5.27 ± 0.74 2.84 ± 0.26
aX ± SE, n = 4.

Table 6. Covalently bound 14C-activity in rat and mouse tissue
following exposure to 10 ppm 14C-VDC.

4C-VDC, ,ug-eq./g protein (X ± SE, n = 4)
Liver Kidney

Mice 22.29 + 3.77 79.55 + 19.11
Rats 5.28 + 0.14 13.14 ± 1.15

Two studies reported by Maltoni and Lee at this
conference have found VDC to be carcinogenic in
mice. Maltoni (7) has reported kidney tumors in
Swiss mice exposed chronically to 25 ppm but not
10 ppm VDC. In Lee's study (8), mice (CD-1) ex-
posed to 55 ppm VDC for one year showed
hepatomas, angiosarcoma of the liver and pulmo-
nary adenomas. Despite the marked difference in

the response of the two mouse strains employed in
these studies, both investigators have reported
moderate to severe chronic tissue damage indica-
tive of VDC toxicity in the tumor-bearing organs.
Only in Maltoni's study was a "no-effect" level for
VDC-induced renal damage realized (10 ppm), and
at this exposure concentration no kidney tumors
were observed.

Therefore, given the enhanced susceptibility of
the mouse to VDC, it appears uncertain as to
whether the tumorigenic responses observed are
truly the direct result of VDC exposure or whether
they arose subsequent to chronic insult which re-
sulted in appreciable tissue damage. Based upon the
preliminary pharmacokinetic data obtained thus far,
it is conceivable that VDC-induced toxicity may
well occur long before a tumorigenic response to
VDC is realized.

Future studies on the fate of VDC in mice will be
oriented towards hazard assessment and the rela-
tionship between the development of the aforemen-
tioned biochemical and morphological events in
VDC-induced hepatic and renal toxicity. It is ex-
pected that these studies will provide data which
will aid in interpreting the results obtained in
chronic toxicity and carcinogenicity studies of
VDC in mice.

Summary and Conclusions
The data presented in this report indicate that the

pharmacokinetics of inhaled VDC in the rat is dose
dependent. Detoxification ofVDC in the rat occurs
primarily via conjugation of one or several VDC
metabolites with glutathione and subsequent uri-
nary excretion of the mercapturic acid derivatives
N-acetyl-S-(2-hydroxyethyl)cysteine and thiodi-
glycolic acid. The diminished ability to detoxify
VDC is enhanced by fasting, and is associated with
a reduction in available hepatic GSH prior to VDC
inhalation.
VDC-induced centrolobular hepatic necrosis ob-

served in fasted but not normally fed rats exposed
to 200 ppm 14C-VDC was associated with an in-
crease in covalently bound 14C-VDC metabolites in
livers of the affected animals. Subsequent experi-
ments have shown that significant accumulation of
covalently bound VDC metabolites occurs when
hepatic glutathione concentrations are depleted by
greater than 30% following VDC exposure. The
data are consistent with the hypothesis that VDC is
rapidly metabolized to one or more alkylating
metabolites which are detoxified via conjugation
with GSH. When the availability of GSH is ex-
ceeded the reactive species may accumulate in the
tissue by alkylation of subcellular macromolecules
and thereby result in toxicity.
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Comparison of the pharmacokinetics of inhaled
VDC and VC in rats points to several marked dif-
ferences in the fate of the two chemicals which may
account for their differing biological actions. In-
haled VC is less readily metabolized, and hence
exposure to equivalent concentrations results in
less hepatic GSH depletion and alkylation of tissue
macromolecules than with VDC. Although the
reactive metabolic intermediates formed from both
materials are detoxified via conjugation of their re-
spective reactive metabolites with GSH, the data
indicate that the biotransformation of VDC during
inhalation exposure is quantitatively greater than
that seen with similar exposure concentrations of
vC.

Furthermore covalent binding of VC metabolites
in rat liver approaches saturation at exposure con-
centrations of greater than 500 ppm VC. This ob-
servation for VC is of particular significance since it
explains the lack of a hepatotoxic effect of VC at
exposures as high as 5000 ppm. In addition this
non-linear or saturable character of VC phar-
macokinetics correlates well with previously re-
ported data indicating a relatively constant inci-
dence of hepatic angiosarcoma in rats exposed to
VC concentrations ranging from 2500 to 10,000 ppm
(9). Thus, although the hepatocyte is not the pri-
mary target site for VC tumorigenesis, the relation-
ship between VC metabolism and tumor incidence
appears to be well supported by these experiments
The preliminary data on the pharmacokinetics of

inhaled VDC in the mouse deserve particular
comment. In the context of our findings in experi-
ments on the relationship between the metabolism
and toxicity of VDC in rats, the data for mice sug-
gest an enhanced capacity for metabolism of VDC.
Furthermore, a potentially greater susceptibility of
mice to VDC is evidenced by an increased produc-
tion of reactive VDC metabolites capable of al-
kylating renal and hepatic tissue constitutents over
that observed in rats exposed to the same concen-

tration (10 ppm) of VDC. The data suggest that
accumulation ofVDC metabilites covalently bound
to target organ macromolecules may be sufficient to
produce tissue damage and necrosis appreciably
sooner than the onset of neoplasia. To date this
hypothesis is supported by the findings reported by
both Maltoni and Lee. In neither study were tumors
in mice observed in the absence of nontumor
pathology attributed to VDC exposure. Further
studies of the metabolism and pharmacokinetics of
VDC in mice are indicated to fully explain the re-
lationships between metabolism, toxicity and po-
tential carcinogenicity of this material. Such studies
are currently underway in our laboratory.
This study was supported in part by the companies participat-

ing in the vinylidene chloride research projects administered by
the Manufacturing Chemists Association, Washington, D. C.
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